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ABSTRACYT

PART I

The several statisticol approachos to the problem of
signal detoctability which have appearcd in the literature aro
shown Lo bs osscntinlly equivalent. A general thoory based on like-
lihood ratio ombraces tho criterion approach, far eithor restricted
falso alarn probability or minimum woighted error type optimam, and
the a posteriari probability approach. Receiver roliadility is
showvn to be & function of the distribution functicns of likelihood
ratio. Tho oxistenco and uniquoness of solutions for the various
approachos is proved under goneral hypothesis.

PART 1I

Ths full powor of the thoory of signel detectability can
be appliod to dotection in Goussian noise, and several genoxal 1o~
sulte are given. Bix specinl cages aro considered, and tho
exprossionn for likelihood ratic arc dorived. Tho resulting opti-
mm receivors are evolunted by the distribution functions of the
1Zlelihood rotio. In two of the apecinl cases studiod, tho uncer-
tainty o7 the slignal onsomble can be varied, throwing sams light on
the e?fect of uncertainty on probability of detsction.
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THE THEORY COF SIGHAL DETECTABILITY

PART I. THE GENERAL THECRY

ISSUED SEPARATELY:

PART XI. APPLICATIONS WITH
GAUSSIAN NOISD

1, Concepts and Thoorotical Rosults

1.1 Intrcduction

Rendom intorferenco plays tho koy rolo in the thecor, of cimal dctec-
tability. I{ not only yp.ecos 2 limit on the onorygy which e signal mst heve to
bo dotectod reliably, but 1t alsu limits the bandwidth of a roceivor for strong
signale, or gonexally the voricty of signnls vhich can be dolected consistently
in a givan receiver. Part I of this rcport prosents the basic theory of detecting
oignalo in randem intorferonce and Part II applice it to some cinplc prevlcoms in
dooien and ovaluntion of receivers,

The gipnol dotectability problem 18 roprosented schomatically in
Fig. 1.1. The oporator has availeble a voltage varying with tims, which will be
roforrod to as the rocoiver input. This voliapro 15 in eome way different wien

e oignal is provent frca whon thore io noise alone.
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[ TRANSMITTER (—{ NOISY CHANNEL RECEIVER — OPERATOR
RECEIVER
INPUT
FIG. 1.1. BLOCK DIAGRAM OF SIGNAL DETECTION PROBLEM.

Tho rocoiver is tho opnrator's tool or analyzing systom, 1t cnables him to gtudy
the input to tho rocoiver by obnerving the recoiver output. U can use tho
roceivor input to his advantage anly if (1) the rocoiver input is different
vhen thoro io & signal than when thers io no signal, and (2) ho knows onough
about the olgnals ond the noise to analyze the input sc ac to recognizc the dif-
forence. The oporator can do botter than random gueosing in dociling whother or
not thore is a signzl proesont only when ho has information atout the eignals,
the noise, snd his receiver; this must be recognized before treating tbio prodb-
lem. The information about the sigril and about tho noise {s wsually of o
statiatical nature bucauso of the randem nature of noise, and the wncoriainty ao
o the exact signal that will be transmitted.

Signol detoctability has boon rocognized as a statistical problam hy
a naver of authoro.l Thore have boen two dictinct appronches to +he pr.ulaonm.
Tho : irst, the cr'imiiu: ppronch, !/ f'vi L proncnieg in Trear ol Signel by

2
J. L. Lovsson and G. I. Uhlenbeck. The second, wsing a posteriori probability,

1

laviscn and Uhlanbeck, Ref. ); Wocdward and Davies, Rofs, 2 3, 4, and 5; Reich
unfl Swerling, Rei. 6; Middleton, Ref. 7; Slnttory: Rof, 8;'Eax'me: Ref.Sé;
lichwartz, Ref. 10; Horth, Ref. 11; Koplan and Fall, Rof, 12,

2ravoar asd Ublonbeck, Roi, 1,

S
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weos ptudied by . M. Woodward and I. L. Dt:.v:loo.:L The daifforence betweon tho

two methods lios mainly in the approach. Doth are presentod in thio report,

and the very closc connection between the results of tho iwo will bo demonatratad
in Section 2; namely, the basic roceiver required can be the saus for either
cago, only the final ronnor of onalysis and presentation of the output is diffor-
ent. The criterion approach requires less of thio analysio, and hes beon given

more attontion in thic report bocause it is somowhat simpler.

1.2 Dstectability Criteria

Supposc tho oporetor 18 rocuired to guess vhother or not thare ies a
oignal precent. He will, for cortain rece.ver inputs, say that & signal ie
preoont.2 Such roceiver inputs vill be said to satisfy the critorion, or t»n be
in the criterion. Those receivor inputs which load hin to guess that thore is no
signal prooent are not in the critorion.

~horo are two distinct kinds of errors vhich tho oporator may make.
He may say therc is a signal presont if thore is only nolse; thic 1o a false
alarm. He pay oay thero is only noise vhen signal plus noise io presont; he
missoo the oignal. Ono of theso errors may be more sorious thasn the other, aoc
that thoy must be considered separately.

1t will be convenient 10 use the ordinary notaticn of prcbability

theory. Events will bo roprescnted by lotiers, and in particular, the following

symbols will bo uscd for the following events:

lpavies, Rof. 2., and Woodward and Davies, Ref. 3.

(2l
“Ye shall agsume tho operator ic sciontifically logical, i.e., for the seme
receivor inpul he will always glve the same responsc. An alternative approcch

15 deseribod in Appendix A.
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SN There is sirnal plus noise

N There is neisc alone

A The operator onyo thore io a sipnal, L.c., the rcceiver inpa-
{6 in thec criterion

CA *he operator cayc thero iu only noisc, i.c., the rcceciver

inpat io not in the criterion.

if 2 and C arc events, P(B) ic tho probability of occurrence of cvent
B, P(B-C) io the probability of cccurrence of events B and C topethor, and I'n(C) ‘ (
1s the (conditional) probability of occurrence of event € if cvont 2 is known ;
to occur.

From the statistical information given about the eignol and the inter-
feronce it twurno out to bo convonient to calculato P, (A) and Py (A), becouse
those quantitice do not deopord upon the o priori probability that a sigiel ig

prosent. This will bo done in Part 1I of this report for some interosting ceses.

If these probabilities, Iy:(A) and Po“.'ﬂ.) are givon ac well us P(Slf), the a »riori
probability that a signel fo prosent, then the probability of any combination of
the events in this dincussion can Le calculnted. In fact, any three (alpcbrai-
cally) independent probabilities can be usod to calculato cll the others, That
thore are just throe (al sbreic-}lv) independent probebilitics can be ccen Ly
noting that all of the csents discussed are cambinatiens of tha four evonts Sl-A,
l+A, SH.C4, and {-CA, and eny probablilitioo can be calculated from tho protabili-
tice of theoe four. But the cum of the probabilitics of these four is unity, oo

only thres ol these are indopendent. Thus, for examnle,

P(oi*a) = P{SH) Pgu(A) , i

PGa) = {1 - p(o0)] pya),
P(SN:CA) = P{SH) Pgy(CA) = P(SH) [1 - ps”(,\)] , (1.1) | :
P(A) = P(SI.A) + P(H-A), f

p(sy) - LSIA)

P(A) sClC,

———— e e e - _
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L2 4 conteriord Probebilivy and Siginl Detectobility

As an alternative to requiring the »perator to suay whether a signal 1o
sruneal wr not, the operator might be ashed what, to the best of his knowledge,
19 the probebility that a sipnal ia precont. This approach has tho advantage of
cetiing more informntion from the receiving cquipment. In fact Woodward und
Davice point cut that if the operator makes tho best possible cotimate of this
probability for each posoible transmitted mecocapge, ho ie supplying all the infor-
metion which hic cquipment can pive him.l The mothod of making the best cstimate
of the o posteriori probability that o oipnal is prosent will be discusoed in
this report. A 300d diecussion of thio approech is also found in the original
papers by Woodward and Davion.2

It 18 ehown in Section 2 that tho a posteriori probability is given by

the fclilowing equation:

£(x) p(sn)
f{x) P(SH) + 1 - P(8BN)

P, (S} (1.2)

wvhore Px(S”) io the o posteriord probability for tho recciver input denoted by

» and £(x) 1o the likelihood ratio for the same recoiver input. Likelthood
ratio for a particular receivor input is usually definod as the ratio of prota-
bility donoity for that recciver input if there is oignal plus noiee to the
probability density i there is noisc alone, It is a measure of how likely that
receivor input {s when there 1s eignel plus noise a8 compared with v .en there is
noise alone. It is & random variable; its value depends upon what the recsiver

input happens to be. If a receivor which has likelihoad ratio ao its output

l'Rcf'. 3.

e, 2, 5, b, and 5.
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can bo built, and if the a priori probability P(SN) 1o known, a posterlorl probe-
bility can bo calculatod easily. Tho calcuistion could be built into tho rucuiver
calibration, making the receiver an uptimum roceivor for obtaining a posterior!

probability.

1,4 Optimm Criteria

An important question is whether or not it is poseible to find the
optimum criterion for a given eituation. A first step toward the ancwor io to
define what 1s moant by optimm, and this definition depands upon the situation.
It may be possible to put a numerical value upon the correct responsos and a

numerical cest on the erroxrs. Suppose

VSN-A = Value of the corroct rosponse SH-A
Vij.ca = Wslue of the corroct responso N-CA
(1.3)
Egn.ca = Cost of the error SN-CA
Ky.p = Cost of tho error N-A
Than
V = . . - . - K .
vﬂN.AP(SN A) + VN'CAP(N CA) KSII-CAP(SN CA) }m.AP(N A) (1.%)

is the expocted wilue of the response of the equipment for a given eriterion.
An optimum criteritn thon would be one which would maximize this exproegsion.

Sincs the later soctions will calculate PN(M and Pgi.(A), it will bo an advantace

to oxpress the expocted value V of the regpoangs in terms of these quantitios.
Vo Vg 28 () + vy o - pem] 1 - b))
- Ksir.caT(5N) [l - I’su(‘\)] - KH'A[I - P(s")] Ry (a)
Vo By (R} BOSH) (Vg o+ By o) - By(a) 1 - (o) Mi.ca * Ka)

+ Y [‘ - V(6N ] - I
n-ca L* (n) Kgpiecp £(SH).

LY - - 6

e —————— e
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ihus maximizing V io squivalont to requiring that
PSIE(A) - § Py(A) 1o o maximum, vhore
(1.6)

1-p) Vheca tKya) .
TN T +Kk 3
(sK) ( SN-A SN.cA’

Hote that P(SN) is the a priori probability that tiere is a signal pressnt.
In another casc it may be required to limit the probability of o falsc

slarm and to minimize the probability of a misso. signal with this restriction.
In symbols, it im required thet,

P(I.A) S Po

P{(SK+CA) is & minfmum, 1)
This also ¢an be expressod in terms of PH(A), PSH(A), and the a priori probability
P(SN):

P(NA) = [1 -P(sn)} Py(A} & Po, or PN(A)S k = 3 and

Po
X -PIPN) ?
(1.8)
P(SN'CA; = P(SH) [l - PSN(A)] is & minimm, 1i.e., PSH(A) is a maximm,

1.5 Theoretical Rosults

Both of the above problems of finding an optimm criterion will bo
discussed in later sectioms, and it will be shown that under very general
canditions both problems have ossentially the same solution. The optimum cri-
torion cousists of all recoiver inputs with likelihood groator than same number f.
For the firct type of optimm criterion, p 1s the parameter in Eq. (1.6), and for
the secand type of criterion, f can be detormined from the vnlus of the parameter
k in Eq. (1.8). It has already been mentioned that a posteriori probability is
the simplo function of likelihood ratio given in Eq. (1.2). Thus & receiver which
could calculate the likelihood ratio for each recciver input can »e used as an
2 ,untoriori probobility typc receiver or as either of the critorion type

r
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recoivors. Part IT o this report, which treats same opscific caoon, dealo

only with tho likelihood ratio.

1.6 Rcceivor Evnlunticml

.

Usvally a receivor io judged on the baoia'of probability of false
alarm if 2o signal is sent, i.6., Py(A), and the probability of dotection If o
signal is sont, PS“(A). Tho reliability of any receiver in any given cituatfion
cL» be summarizod in one greph, called the receiver operating characteristic, on
vhich PSN(A) is plotted agninst PN(A). For any criterion and any fixed set of
eigals, thero is fixed value for Pg(A) and a fixed value for Py(A). Thus the
criterion can be reprosented o & point on the recoiver opurating characteristic
greph, A critorion-trpe rocoiver may oporate at eny level (i.¢., any value of
B ar any valuo of K), and henco io represonted by a curve. Two types of op.'mun
criteria have been discussed, and tho graph points up the relsticn betwoon
ths two. In Fig. 1.2 curve (1) 1s based on optimm oporation for which PSN(A) is
mximized for PN(A) fixod. Thus, no rocejver can opercte above the firatl curve.
The third curve is a lower limit in operation founi by rotating tho opiimum
curve about the center point of the graph; it would result if an optimum roceiver
operator minimized PSN(A), i.e., caid no vhenover ho chould say yes, and vice
vorea, No roceiver, no mattor how poor,can be mnde to operate be.ow the third
curve. Tho diagonal could he achieved by turning the rocoiver off and guossing,
in which caee Py (A) = Py(A).

In tho next section it will be shown that the derivative of curve (1)
cketched in the lower plot, is tho operating level 5 or tho optimum

vocoiver;

that 1s, 1f the clope at same point 15 §, then the corresponding optimum criterion

1
Only evalustion of criterion type roceivers is ciscucoed

i cd here. Ew o
a postorlori probability type recoiver ic considered in Section 2; ‘\)f'iluntion o

&
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is made up of all inputs whach have likellhood ratio greator t:an or equal to .
The relaticnship botweern the first and second iypes of optimum criteria 18
graphically illustrated in Fig. 1.3. If at any point (PH(A)’ PSN(A)) on curve (1)
a4 line is drawn with slope #, it will be tangent to the curve and will intersect
the axis at tho value PSH(A) - P"(A) . This is the quantity to be maximized
for the first type of optimm criterion, and if a linc with tho samo clope is
drawn through any other point on or botwoen curves (1) and (3), it will cut the
axis bolow the point whsrc the tangent cuts tho axis., Thus, curve (1) 1is not
only tho curve for tho optimmn of tho typo vhen PH(A) 16 bouncdod and PSH(A)
mxinized, but also t&> curve for tho optimm criterion vhon values ara placed
on the operateor's rescponses.

A non-optimum receiver can be ovaluated in & given situation if ite
receiver oporating characteristic is drawm togothor with that of the optimum.
One recoiver is better than another over a range if it is cleser to the optimum
than ths other. In come instancos ths optimm curve for a given situation will
nearly match anothor receiver's cperation in the same esituation except that the
optimm will roquire loas signal energy. In this case, the non-optimum receiver
can be givon o db rating for that situation.

Each applicaticn of tho theory troated in Part IX of this report is

accompaniod by tho roceiver operating characteristic of the optimm receirer.
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2. MATHEMATICAL TIEORY

2.1 Introduction
The msthod for handling the eignal dotectabllity problem mathomatically

1o described in this eoction. The first step io the pregsentation of tho apmo-
prisve mathematical description of the oignalso and noise. In theao tc'ss tho
signal dotoctability prcblem is rostated in several forms discussod in Section 1
of this rep rt. It is then shown that in each caoe, if the likelihood ratio can
be determined for oach receiver input, the probler la cosentislly eolved. Thug
the conclusion is that the receiver design problem should bo treated in terms of

l.ikelihood ratio; this is tho approach used in Part IX.

2.2 MHathematical Descriprion of Simnls and lolse

Any recoiver inmput, noiec or signal plus noise, is a voltage which io
a function of time, Thus we shall be considering a sot of functicne., In this
report it will be asaumed that the roceiver input io limited to bandwidth W, and
that the cbservation is of finite durntion T. By the sampling t.heorexn,1 any
such Zuncticn is completely determined when its volucs at "sompling" points spacal
1/2W seconds apart tlwough tho observation interval are known. There are 24T
sampling points in all. Thus a recoivor input cen be considered as a point ina
24T dimenscional space, the valucs at the cample points beinnt taken as coordinates.
Lot us call the space R.

If there is noisc at the receiver input, the receivor input voltage
may usually be any of an infinite number of functions, i.e., any of an infinita

number of points in the 2WT dimensional space R, VWith Gausoian noise any point io *

1Shrumon, C. E., "Comwunicotion in the Presonce of Notve,” Proc. IE, Vol. "7,
p. 10, Tanuary 1949; also Appendix D of Part II. -
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. theooretically poosiblc., It is a matter of chance which one occurs. Thus it
cppears that the appropriatu way to describe the nolse is to give the probatility
donsity for points in the space of receivor anuta.l Tho semo is true when there
is signal plus noise, so that wo shall deal with the space R and two protebility
i density functions, r"(x) for the case of noise alons, and fSN(x) for the case of
eignal plus noise. MNore x denotos a point of tho space R.

In a practical application, informotion will be given about the signals
as they would appear without noise at the receiver input rother than about thoe
signal plus noiso probability density. Thon fs“(x) mst be calculated from this
information and the provability density function fN(z) for the noifee. The noise
‘ and tho signale will be agsumed indepondent. If the signals can be described by
a probability density function f4(x),

foy(x) = f fy(x-8) fg(s) a2 (2.1)
' R

| vhore tho integretion is over the whole space R. The receiver input x(t) could
be caused Ly any sigmal o(t), and noise x(t) - s(t). The probability density
for x is the probability that both g(t) and x(t) - s(t) will occur at the same
tims, sumed over all possible s(t).

: If tho signals cannot be described by a probability density function, a
more genorsl form must be used, in which the signals ere described by a proba-

bility measuro, Ps; the formula for thio case is

i . foy(x) = er(x-a)dPs(s) . (2.2)
R

This is what 18 called a Lebosguc integral, and it moans sssontilally to average

!
|

lwo onall asoune that the probebility density tunction exists. Seco Appendix A

e Y3
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fN(x-u) over all vuluss of 8 in the whole spuco wolghting eccording to the
provobility Ps of the pointe & appoaring as oignn.ln.l

2.3 A Posteriori Probability

Ths spproach of Woodward and Davies® to the signel detectebility
problem 16 to ask the cperator, '‘What is the probability that a signal 1o pre-
sent?" He is to give the probability, using knowlodge of the receiver input,
i.0,, ho gives ths a postericri probability.

If the probability density functions ars continuous, the a posteriori
probability Px(SN) can be found for any particular roceiver input x. Boyes'
thaoa'emj is used, but not directly, since Ps)'.(x) and PH {x) are both zoro.
Cocpider a small sphere U with radius r and centor x. Thon Py(SK) can be ob-
tained by Bayes' thoorem, and Px(SN) can bo dofined as the

P (BN) = lim Ry(sn) . (2.3)
r—*0

Denote by P(SNH-U) the probability that signal plus noiee will bo present and
the receivar output will be in U, Then

P(BH'U) = P(SK) ° Pgy(t) = Py(sN) « P(U) {2.h)
and
P(U) = Pgu(U) P(SK) + Pp(U) (1 - P(sn)) (2.5)
Bolving for By(BH), P (am) Far (V)
i
Fo(B1) = FTER) Fop(0) + (1 - F(@N)] Fp(0)
(7)
P(sN) il
. B9

(2.6)

P(3N) —s%(-;— + (1 - p(sn))

1
Cromfy, Ref.l4, pp. 62, 188. 2wood\mrd an¢ Davies, Ref. 3.
1

3(Tt'mne'r, Ref.th, p "7

——— e
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Dy the dofinition of probability density function,

Poy(U) = [ fgylx) &
U

B(U) = Uf £(x) &, (2.7)

whore the integral is really a multiple integral owor the volums of the spherc

U in the n-dimensional space. Thon

f fSN(x) ax
PSH(U) = v ? (2°8)
RO T TR S
tnd 1f fgy(x) and f“(x) are continuous,
Py (V) Ten(z)
8N w S e g . 2.
rs0 B0 R @9

The ratio of probability densities r&a(x)/f“(x) = f(x) 15 called the 1ikslihosd
ratio. It follows that

lim i) £(x
Px(sr«) * peo PylsN) = FER) 2(x) + [1 - PR (2.10)

This is the existence probability as dsfined by Woodward and Dwie;.l

Notice that the lilalihood ratic 2{x) iz ths all-important quentity. P,(SH) is =

simple monotone increasing function of the likelihood ratio, Therefore il P{BN) i%

jmovn and if the receiver producee [(x), & calidration will cunvert this to P, {SK),

2,4 Criteria and the Optimum Criteris

2.,4.1 Definitions, Suppose the aperator is only reguired to guess

vhether or not there is a sigaal present, For certain recsiver inputs he will

guess there !s & signal present, These receiver inputs form a subaet of

- 15
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tho epace R of all possibls receivor inputs. Lot uo call this suboet the
eriterjon and denoto it by A. Thaet i, a point X ig in the criterion A Af the
operatar sill cay there is a osignel proaent when x occuwrs 88 roceiver input

It will be convrenient to have 2 symbol for cach of the two types of
optimw criterie dsseribod in Sectiom 1.4, Tho first type will bo denoted by

A,_(B); that is, fxl(a) i any subset of R such that for fixed p 2 G,

e

iy !_Al {6 j N

The sscond $ype will bs denoted by Ay(k); thet fa, Ae(k) is ony subset of R

1 the folloving

discussicsn. It ip a monswrs of how mich more Likely ths recsiver input ia to bdo

Theorss 1: Denois by A ths sot of poinis for wnieh the 1iks)1n

Then A 4= un optimum critezicm A, (B).
1 B
Procf: The conditicn that A he an opiism eritorion A {B) 10
i &, (B)

that Pau(A)} - B P, (A} - -
griA) = B hyA) 1s moximm; t.6., for any ocher set R of

ra¢oiver input {8y - '»
e st T B FA) 2 pg(my - o P, (®).

a
]
a4

——— ——

-8 P, [A (a)] ie meciimen, (2.11)

(2.12)
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Poy(a) - B () = [ fon(x) ax -8 [ gy(x) ax
A A

(2.13)
. Ajf [I‘SN(X) - pr(x)] x|,

whore the integrotion 18 ovor tho got A, and ru 10 really a mmlti-
ple integral over a part of the arwce R which hus 2WT dimensions.
Lot B bo any set difforent from A. Denote by A-B the sot of
points which are in A und not in B, by B-A the set of points

| which are in B but not in A, and by BNA the set of points which
belong to both A and B. Then since A 1s the wnion of A-B and

ANB, and A-B and ANB have no points in comaon,

Py(a) < B Ey8) = [ [£0) -5 2a(x)] &

‘8K
A
| o [ [t -0 ] & (2.18)
, ANE
; + Jf [ fSH(x) -p fN(x)] dx
! A-B
Likewiso
Poy(®) - 67y ®) = [ [ ) - 0 )] e
ANB (2.15)
v [ [ty -0 )] e
B-A
Thug

P (A) - B Py(A) - [PSN(B) - PH(B)] w
(2.16)

A {[fsn(x) ) 'ﬁ fr.'(x)] ax - f[fsn(") =P tu"‘)] dx
- B-A

|
o kT v

" . ) .
& e o . w.?i@ﬂmm;”@g‘:;:mxm..&;f.ML:’ a7 A
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The points in A-B arc in A, and eo for then 1,)“(x)/fn(x)
L£(x) 28, so that £ (x} - D fI_(x) > 0, and the firot interral 3‘
in Lq. (2.16) 1o not loss than zero. The sointo in the set B-A
are not in A, 8o fsu(x)/fN(x) < 8, and tho second intocral in

BEq. (2.16) iz no greater than zoro. Thus

- > - 2.17) :

P.,(R) -~ P P“(A) 10 a maxtmm, and A is an cptimmn critorion Aj () :
b:l N

Thero is not a uniquo optimm critorion Al(ﬁ) . In the firot placo

"optimm" was dofined in terms of probability. Thus a chango in A, (B) vhich

d result in an oqually good
would not change PS{ [Al(fj)] or Py [Al(ﬁ)] would re
criterion. Such a change might conviot of adding or taking out a singlc point, ;

& l £,
a finite number of points, or renerally any aot of probability zero.™ lore

L

insight into the uniquences io given by the following theorem.

SNt w2 ) W

Thoorem 2: If A is an optimm oriterion A;(B), thon the set of points in A for
vhich £(x) < p has probability zoro, and the sot of points not in A for which
£ (x) > B bas probability zero.
Proof: We will show that any criterion which does not have thogco :
two propertiesc 1o not an optinum criterion. Consider any cri- F
terion B with & subeet C, of non-zoro probability, such that the 4
likelihood ratio of oach point in C ic leos than 8. Thore i5 o ‘
pooitive numbor ¢ and a subset C, of C, having nov-zore probability, {
such that £(x) S p - € for tho points in Ce - 12 thio wero not 4

true, then for any positive omnll number € , the subset Ce would §

have probability zervo. These gsubsote Ce are monotone, that i3,

VST SR

Ly gt [ will be vaid to heve probability zero if both P,

. N e e
sufEl enc by (C) are .erxe

16 o .
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if ¢2< €, then CEa cantaing C‘l’ and, since C contains no
pointe with likelihood ratioc equal to B, tho union of ali C¢ 18 C
it30lf, and would have probability zoro.l

As in EqQ. (2.1%),

Pay(Ce)- B Py(Ce) = f [taN(x)-ﬂtN(x)]dx- f rN(x)[l(x)-ﬂ]dx
Ce Ce

and oince L(x) S B - €or L(x)-pS - 2,
Psy(Ce) - B Pn(ce)s - f tN(x) dx = -€Pe(C) . (2.19)
Ce
Tharefors, if PN(% ) >0,
Pgn(Ce) - B P"(C‘) <0 {2.20)
But ¢ 1s a subset of A, and therefore

Pg(B - C¢) - B By(B - Cy) > Bgy(B) - B Py(B) (2.21)

and B 15 not an Al(c). It can be shown in en enalogous manner

that {f there ic a sst D of non-zero messurs outside of criterimm

B such that £(x) > B in D, thon there i3 a subset D¢ of D such

that
Pgy(De) - B 2y(De) >0 (2.22) K
I and therefore
? Poy(BYDe ) - B Py(BYD, ) > Pgy(B) - p Py(B) , (2.23)

PR

and B is not an Al(B)'

——

1cramér, Ref. 14, p. 50, Eq. 6.2.3; ond p. 77, pamgraph 8.2,

<
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This theorem says rothing about tho points f<r which £(x) = p. Tt

is not hard to show that pSN(A) -p P"(A) 1o not affocted by including or ex-
cluding points vhero £(x) = B. Thus a criterion Al(B) must include all points
for which £(x) > B (oxcept perhaps a sot of probability zero), nane of tho
pointe where £(x) < § (excopt porhaps a set of probability zero), and it may or
may not include a point for which £(x) = f.
In the most gmnoral case, vhon the nolse is Goussian, the following
two thoorems show the uniquencss of Al(a).
Theorem 3: I the probability density function for noise alonc, f“(x), is an ana-
lytic function, then the set of points for which .4x)= § has probability zoro.t
A fwnotion is seid to be enalytic if it is analytic in tho ordinary
sanse vhon comsidered as & fuimction of mach singlo coordinate, The procf cf the
thoorem is quite involved, and so it ie given in Appendix B.
Theorem 4 follown immedistely from Theorem 2 and Theorem 3.
Theorem 4. If the probability density function for noise alone fy(x) is analytic,
any two optimum criteria Al(ﬁ) can differ only by a sot of probability zero.
Now let us twrn to the second typo of optimum criterion.
Theorem 5: Lot A bo a oot ouch that if x ie in 4, the likelihood rutio £(x) 2 8,
whflo if x 1 not in A, £(x)S . Then if PH(A) =k, A is an optimum criterion
Ay (k).
Proof: An optimum criterion Az(k) must satisfy the conditione
PN(A) S k, ond Pgy(A) 1s maximum, The first is satisfied by
hypotheois. Suppose B is any othor sot such thot PN(D) < K,

Denote by A-B the set of points in A which are not in B, by B-a

l/\ little more fs noeded in the hypothesis for ‘heorem 3 than that fya(x) 1o
analytic. Sec Appendix B. u

¥ e o
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-

the got of points in B which are not in A, and by BW tho cct of i

points common to B and A. Since A is the union of A-B and ANB,

and since A-B and ANB have no pointe in common,

Py(A) = ffN(x)dx - /ru(") ax ffn(x)d.x
A A-B AOB

= Py(A-B) + P (ANB) = k .

Likowise
PN(B) - PN(B-'A) + PN(AQB) S X,
and thus
PN(A-B) 2 P“(D-A)
Also,

Pop(®A) = [Toyx) &
B-A

Loy (X)
and since any point x in B-A ie not ina, L(x) = ?%';rs
N

PSN(B-A) - f;%}(‘gi rp(x) ax B er(X) ax
B-A B-A
or
Pgy(B-A) S B By(B-A) .
Likowise
Pgy(A-B) 2 B Pg(A-B) .
Collecting Eqs. (2.26), (2.28), and (2.29),

Pgy(B-A) 5 B Py(B-A) S B P, (A-B) S Pou(A-B) .

21 e e e e e

1A%

(2.24)

(2.25)

(2.26)

(2.27)

8 eand

(2.28)

(2.29)

(2.40) i

e

cw Fous,

.
oy
ot e 507 8 e e 2%



As in Eq. (2.24),

Pgy(A) = f fou(x) &x = ffsx:(") ax +
A A-B
- PSR(A-B) + PSN(AnB) P

and
Therefors
Fron Eqe. (2.30) and (2.33) it follows thatl

and PSN(A) is o maximm.

Since Py(A) has some vnlue, call it a; A will be an A, {2} *

first t A h tP =X,
ot type Ay, ouch tha N(Ak)

not less than B:

el
=3
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ffsn(x) &
ADB

Pgy(B) = Pgy(B-A) + P (A0B) .

Py (A) - Pgy(B) = Pgy(A-B) - Pgy (B-A).

first type it is assoclated with tho fixod B for which it 18 an Al(p). By
Theorem 2, the likolihcod ratio in A 1s not loas than B, and outoide A the

likelihood ratio 1s not greator than B, excopt on & net of probability zero.

J Theorem -

Mg = {"IE(X)ZD}

(2.31)

(2.32)

(2.33)

(2.24)

It follows fram Theorom 5 that evory optimum of the first type, Al(p),

ie an optimm of the second type. More procisely, if oot A is an optimum of tho

the introduction or omission of such & set has no offect on PSN(A) or Fy(A).
Theorem 6: For every k botweon O and 1 thero is an optirum critorion of the

Proof: For each value § we consider the maximal Al(a); by Theorom

2 this is the set consisting of all points of likolihood ratio

Dut

Y

dsx .- F XU

S
3
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low 1f for k there is a B such that P"(Mﬂ) = k, then bocause M,
is an Al(ﬁ) tho proof is complete.

Next we point out that 14, is tao whole space R and My is
tho ompty set, and therofore PII(Mo) =1 and PN(MQ) ) = 0. For
any value of k, 1if there 1s no MB such that PN(MB) = k, let
B* = nin {ale(MB)z K} = gev{p IPN(MB) <k} toat s,
Pn(l-ls*) >k and 1f B> p%, Py(Ms) < k. Thus the jump in Py ie due
to thoso points in Mp* for which £ (x) = p*,

Becauge the probability donoity functions exiat, every point
hao probability zero and therefore there is a osubset S of theoce
points with A£(x) = p* for which P" o P"(MD*) - k. This is shown
in Appendix B (Leoma b4).

Removing this suboet fron M *,

B

Because MB* - 8 oatiocfies Thoorem 1, it io an Al(fs*). of

courgo, by Theorem 5, it is an Ae(k) also.

Pn(uai-s) = k . (2.36)

The following theorem complotse this circle of proof,

Theorem 7: For any k thore 1o a 8, such that overy Az(k) is an Al(Bk).

Iroof: Let A be any A_(k).

By Thoorem 6 therc exiets a By and an Al(uk), vhich wo will denote
by A%, such that P, (A%) = k. Thor by Thoorem 5, A% is also an

;\2(1:), and hence for both A and A%, Pgy 1o moximum and PN 5 k.

Thoroforo
Pou(A*) = rgn(A) (2.37)
P (%) ek 2r.(0) (2.38)
tultiplying 2q. (2.38) by - f. and adding gives
1-31'(.\*) - ;31: 2 (A%) < I’SE:(,\) -3y r::(;\) . !

(%7

«

o o P R

vl

NGRS RMLT Fehratad i he o4 %

i e



ENGINEERING RESEARCH INSTITUTE - UMIVERSITY OF MICHIGAN —

Since A* maximizee this expreseion, the equality must hold, and
A ie also an Al(ﬁk).

In summry, thece iheorems show that f can be writton as o multivalued
function of k and that k can ho written eos a multivelued function of . Theee
rolations can be sharpsned somevhat.

Theorem 8: Lot & < b bs tvo values taken on by £(x). If no sat of the form
{x | 1—1 < £(x) < ,Ee} for o g £l< £2 $ b has probebility zore, then B
is & single valued function of k on soxs intsrval I, with a $ ekS b, and
d Ps“(Al(Bk))/dk existe and squale B for svory k in I
froo?: 1) In gsmersl, if a function is monotame on an interval
and 1ts range of values 4o alse an interval, theu (it is con-
timupus, I8 1% were not; than at sws point ths left and right
hand limits would be unequal, which would introduce & pop in the
rongs of walusa, centredicting ths hypothsses.
2} Ifﬁ.sl=ﬁkeaud1fthcmtermnmf}kltoﬁke
contains 8 subimisrval of { &; h:! of length greatsyr han zero,
then &y > ky . Thars arc; by Theorem 6, criteria of ‘ho first typo .
Ay (for 1 = ), 2), which; by Theorem 2, may des chooon oo thot Ay
coxtcins 81l points for vhich .£/x) > ﬁki and no peints for vhich
A (=) < Bxi. Alse Py(Ai} n ki, by Theorom 5. By applying
Py to the equation Ay = AlU Ay - Al:" .= obtainn
ky = k_L + PH(AQ - ﬁl). If Py(A, - Al) + 0, then froa Eqs. 2.7

and the fact thet £(x) 1s boundsd on A, - Ayv 1t follows that

'sn(‘\e - Ay)) - 0 aleo. But, by hypothesen, Ay - Ay cannot mavo

probability zero. Hance k,_,)kl.
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v a - e el

e

.,

o i _—




—  ENGINEERING RESEARCH INSTITUTE - UNIVERSITY OF MICHIGA

%) Lot I bo tho sci of points k for which at least

& -

that the range of veluos of §, e tho intorval from a to b,

three veluos kL< k2 < k,, with only the middls one vot in J.

Then{)kl< %<ak5mek2wm4notmmtmmmm

1} can be applicd to 61: and ak is therefore coutinuous on I.

! 4) To form the derivative, let

D= AR A By ) RSB

!! - Al(on) - A (B 0P, 2 Py
Then
PSN(Al(ﬁk)) - Psn(AI_(ﬁko )) b R(D)

1in - lim B __
k~kt k - ko k—-+k+ k-k

Since k 2 k , B, S % and in D, aks L(x)s B‘-'-o' B:r_f“(z)

= fsn(x) S akofP(XL But

Pgy(D) = f fo(x) &x = /z(,) £,(x) as
D

and

Ly TR st 1ot Mg i it T oo o RGBS

By 18 in the opan intervel frum & to b, and lot 5)( denote the
{ poansibly multivalued function defined on J. Then 2) seyr thet £

ie both single valued and monotcne, and Fheorems 1 and & Leply

Hence I ir an interwval, for if it were not, there would exist

from & to b, yet the other twe would bo--s contredictian. Thus

SO TV T— g 7 e e T, e 1 g T T A
ey T T ——ETR T AT T B e et = e Agb &y 500 ey o de v e > TR ER TERT | SR ARG ST AT R TR YSREED wE ey P ey i
e e P o = ot T T T R R r e e DS T e i R o B A A R e P i
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(2.42)

(2.:3)

(2.14)

2.43)
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and therefore B P.(D) € P, (D) € B, P, (D). Similarly if K S x,
» ¢ QI! LO it

ﬁXOPN(D)s P, (D) < BF (D). Thus &

SH i

Fep (D)
lim L) = B {2.146)

Kk — K k - kg
o

by virtue of the rssuit that ;3}’ i a continuous functica of K.

~

2,5 Evaluation of Optimm Recelvers

2.5.1 Introduc:ion, This section treats the prodlem of determining

how well a given receiver will perform ite task of dotecting aigrals., l'or the
critericn type receiver, tho probability of false alarm if no signal is sent,
PN(A), and the probability of detaection if a eignal 1is sent, PSN(A), give &

good measure of receiver performance. For the a postoriori orobability typeo

L r—— o —n - =

o,

recoivers, the averagoe or mean a posteriori probability with signal pl 2 noise

[ —

and with noise alone dsscribe the recoiver’s ability to Aiscriminate betweon
signal plus noise and noiso alone,

2.5.2 Evaluation of Criterion Type Receivers. For simplicity, let us

restrict this discussion to the case in which the probability deneity fuaction
for noiae alame, rN(x) is analytic.

Denote by Fgy(B) the probability that tho likelihood retio £(x) is
equal to or groater than f if there is signal plus noise, and sinilarly, iet FN(‘))
be ths proba™Mlity that £ (x) 16 equal to or greoater than § if thore is noise

alane. These are the complimentary distribution functicas for £(x). Then for

WAI(B)I '

PSN (A]_ (a ) ) b FSH (:3 ) ) (l..“l(l (2- B M ) :

PN (Al(a)) = F”(ﬁ)y 2

S, - re —————
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By corrssponding to k can be found from Eq. (2.48)

Then

Pan(Ap(k)) = Fgyu(py)

Thus, 4f the distribution funoctions FSN(e) and Fﬂ(ﬁ) ere knova, any oriterion
type raceiver can be evaluated,

It turno out that not both FSN(B) and FH(B,) aro nocessary. Thecram 8
states that

d ¥gn(8)

3-"1;;-(-6—5— “ B ’ (2-51)

since Pgy (A (By)) = Fgu(By ), and k « FN(B’{). Thus, 12 FH(,B) 16 known, an(a)
can bo found by integrating ¥q. {2.51).%

@
Fgu(8) = - f yardy) . (2.52)

p
As an alterpativs, Fgy(B) might bo given as a function of B‘N(ﬁ); this 18 the

roceiver opsrating chavectar

4 Cote] Mis man
N8 o P fye

on f can b found frow Eq. (2.51);

i.c., B 18 the slops of the greph.

]‘rhe change in eign is bocauca the functions Fgy(p) and ?H(ﬂ) are compiimentary
dietribution functiona. If the demsity funciion associatsd with F.(B) is g(B),

qa Fy(B fa0]
then -—d-gu = - g(p) and Fsgg(ﬁ) = jf s{B) & B.

B

3
[}
-

{
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necauge the sot of points for which £(x) Z p, and differs from any A, (8) anly by

8 sul of probability zoro (Theovem %), By Theorcm 7, avery A, (k) ie an A; (B). The

Puhy(B)) = Fp(By) = k- (2.49)

(2.50)

PSR

il
Ras o
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A corollary of Theorem 8 is the following: Tho nth moment of the

distribution for noise alons is the (n-1)st moment of the signa! plus nolee

dietribution.
® ) o
[ rarm o [ Praarnen o [ Farg, @)
-0 -® -

As an example of the application of this corollary, note that the msan value of

&

1ikelihood ratio with noise alonc is always unity. If the variance with noige

alone ig 0‘1'2, the second moment of FN(B) 18 1 + 0"{2; then the mean of the

AT AR 8 i

P

2
signal plus noise distributiom is 1 + crN" ; and the differonce of the means s
2

;:»% UN . Por dstection corrasponding roughly to Fig. 2.1, the difference of the :
% means O0f the two distridutions must be of ths order of the standard deviation of
F’E the distributiovs, so that }
2 l
E% (o3 & (o4 » (2-51‘)
H N
l g
L] '
|
|
) !
FiG. 2.1 i
RECEIVER OPERATING
il CHARACTERISTIC ,
‘, _ / Forory + 1. l
“ 2
: 11/
a
d
t oo P“ (A) L
e e 20 ———
¢ i
e — =
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|
| or the variance of the distribution with noise alone must be of the order of

Al
wity. For beiter detection, rfN‘ must be greater.

2.5.3 LEyaluation of A Postoriori Probability Yoodward ena Dovicas Type

Receivors. Davies proposss the mean 8 posiericri probability as a mszsure of

*he efficiency of a raceivar. Tho mean a postoriori probabiiity 1s defisnisd as:
r y A d
Bgy (Be(SN)) = ] P (SH) fo{x) ex (2.55)
B

; ElB@R) = [ p (ony ¢, (x) o (2,56)
| R
! .
i These can be evaluated if the diatridvution functioms FSN(S) and FN(;'_‘\,‘. for LiRsl:-
i hood ratio are kmown, Since
{
P(SN) L(x)
! Pr(SH) = By R(x) + L P(ER) (2.57)
!
| tho mean a posteriori probabilities are
i
]
. Yy P(SK) A F_ (7), and (2.58)
"SN(Px(SN)) / y P(8R) + 1 - P(SN) sn(y)~ (2.58)
'y P(SN) 2ot

Davies prosonts the formula

Hgn [Px(sn)] * 1;§"sn 8! [PZ(S’”] =1y

o
Ny
.
N
)
S

vhich ensbles one to calculate ccsily oither cne of the moan a poateriori proba-

bilitien onco the other has been calculated.

K 9 - i 5 o 7T
N, Gltae¥ :?_3: - ag.nf;g.wb? y
et L -

il %S T
-
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It ie possible to combins the mos* comrn stalistical approaches to

tha thecry of signal dstsctability into one general theory. In

likeithocd ratic plays the cenirol rols: the regult of the ihao

»

1
]
a
q
&
Q'
c.
wd
o
"

acoctplisk the task spacified in eny of ths well-imown apyroacheu to signal

Stse
wign the roceiver reliability can be avaluuxied.

M Part I

¥4

]

functions are calculaisd for & wmbsr of apseific cagap, and the

receiver denign are discussod,

o that 16 output is likeliliced ratio can be ndapred easily <o

tabflity. If the prodability dlscribution of likelihicod ratic i known,

of tais report, liksliheod :atio and its afstriduticm

. —————Ar el PO Pt

,.u.n PERX DT IS 7 v
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ATPENDIX A

It vas asoumed throughout the discussion of the criterion approsch to
signal dotectability that for any given receivor input, tho operator would alwayn
give the same reoponse, This is cortainly not the case witn threshcld sipnuls
wrd & huran operutor. A moro realistic aprroach night be to esswus that for any
recoiver input x, the operator would eay with probability p{x) thiat there 1e
signal plus noise, Finding the optirum receiver would ther consist of finding the
optimum p{x}. This approach doos not lcad to w.y interesting new results; ir

p(x) = L an an optimm critericn and Zoro on 1té campliment, then p{x} ia

The thoorems on signal detoctability are proved in Sectiac II in mnre

gorércl form than hus yst boon found necossriy in on application, However, they

Q

an bs ageneralized scuevhat, and thia appendix diccusses scmo of the possibili-

igg,

<t

It e certalily possiblo to comeider nare genernl speces of cignsls. Awy
tpeco oh ¥hich 6 probabilizy measure can be dafinsd might be uses. In ordsr tec
prove the thuorems cn optumun criteris, hovwsver, sous sort of likelihocd xutio
acoms neceasary, (ne pogsibility ls to aspums the moagure ng("‘) and the random
variatis £ (%) sre gdven and to dafine anp".) tarcugh the integrel

pea®) = [ 2m)ar ) (A.2)

A

.ho moan value of £(x) rmst be unity, of course.

she gpace ig a Fuclldean spacs of finite dumnaion, thon it is possi-

1e co tefin~ an arbitmry ooamure through distridution functions, These

. s s . - . I - e B 2 R e B f e e s R
P s o Tl S -y TS . RO R .

e HESEAIN AT IR S RUPAT
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™unc*ions, being monotone, have a derivntivs elmoot everywhers, and thus sifo.

a means of defining likelihocd ratio. For any point which has meagur~ ~eru, he

1likolihood im tho rotio of the devivatives of the distridution function for eifnal,

R T

plus noise and .or noiss alons. Doints wiich do act bave measure zero can always '

bo trovated separatoly. There can bs cnly a countable number of these and liko-

Ll

lihood ratio far swch & peint x can bo definoed as

n
L(x) = B0 (A.2)
Any point vith infinite likelihood ratio belongs in the criterion, of course, and
such a point has a posteriori probabili y unity. Than likslihood ratio is dofined
except for a set of points of msasurs zero.

In eny caas where likslihood ratic is defined and satisfies Eq. {A.l),
Theorsms 1 and 2 can be proved. The lama (Appendix B, Lemws 1) vhich ip needed

for the ool of Thoaram 5 can be proved for any space and msasure for which sets

f=)

ARl SRR L G RS LS L L e St L L e B LR B Ry P i L T

of arbitrarily smsll msesure can be found containing each point. If this holds

and lilslihood ratio is dsifined, then Theorems 5, 6, 7, and 8 can be prowved,

kot
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APPENDIX B

This appendix contains the proof of Thoorom 3 and the lemma required to
comploto the prouf of Thoorem v. It is convenient tc prove thres lemmms from

which Theorom 3 will follow diroctly.

Lemma 1l: Let S be a uphore {%.c., the set of all pointa whose distance to a
fixoed point is logs than or equal to a fizod positive number) in n-dimensicnal
Buclidean spaco EY. Lot £(x) be a continuous real function defined on S. Then
the groph G = {[x, f(x)]} of f(x) in Enﬁ has (n+l)-nmeasure zero.
Proof: Lot the volume (the n-owaoure) of S be V. Since f{x) is uniformly continu-
ous o S, for overy € >0 thero is a 8 > 0 such that vhenovar the distance between
x; and x, io less then $ 1t follows that | £(x,) - f(xe)l < efhy,

Moreover, for each S > 0 there is a decamposition of En into pairwvise
disjoint cangruent n-dimensional cubes each with its groatest diagonal of longth
less than 8/2. ~uic decoumpositica mey be chosen so that, if {Ci} 1al, 2,..04k

ere the cubes taat touch S, then

¥ (volume c)<av . (B.1)
1
Thuo I, = £(Cy) 10 an interval of length loss than 2(¢/bV) = € /2V.
Now, let Ci'bo the (n+l)-cube formed by tho Cartesian product 01 N Ii; y

construction, the graph G is covered by the (n+1)-cubes Ci". Also

Y |(n+l)-volume cii]s % [(n)-volum ci]e/evsev. € /ovs € . (B.2)

-~

“hus for cach € > O thero is o covering of G by (a+l)-cubes whose total

fms1d-valuae 1s less than € . This means {n+l)-measure of G io zorn,

e ———— ———ei T
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Lomma 2: Lot D be an opon set in Euclidean n-dimensional spaco Y and (%) a
real function defined for all points x in D which has continuouo partial deriva- !
tives of all ardors such that at cach point x in D at leaot ono partsal deriva-
tive (of any order) doec not vanish. Then, if b 10 some valuo takon on by f,
the set r'l(b) of all points x such that f(x) = b has n-measuro 2ero.
Proof: A point x in D 1o saxi to have "ordor zoro” if some first order durivn-
tive of £ does not vanish at x; x hag "order r" (r a positive intoger) if oll
partial derivatives of I of order § r vanish at x, but at loast ane partial
derivative of £ of order r+l does not vanieh at x. By tho hypothoscs, overy
point of [ has finite order.

For each integer r 2 0 let C. be tho get of points 1in !"l(b) of order

®
r; then r"l(b) = U C.+ The thoorsm ia provod If it 1o shown that tho .a-moasure
r-0

of C, 18 zero for oach r. This vill be dano in two steps.
I. At ocach point x* in C , thore is a sphore S(x*) centorod at x* such
that S(x*) () Cp hos n-messure zoro.

i
II. There is a countable collection {S(x )} » 121,22, ..., of such

ee]
sphieros ouch that Cr io contained in the wnion S(xi).
i=1

Steps I and II topcther show that n-measure of Cr 18 zero heccauge

< Q 1
0 S n-peasure Cr h n-measure [S(x )ncr] «c 0 . (B.3)
i=l

—-——

Step IT ic an application of the Lindeldff theorom which asserto that overy col-

loction of spheres contains a countable subcollection whooe wnion 1o oqual

+ 41
Lo Ui

union of all the originel spheres.

————— . o~ e
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The proof of I fullows:

Since x° 18 of order r, one of the dorivatives of order r of f(x), o&y

w (x), hao a firet order derivative vhich does not vanish at x® By a change

in notation, thio can bo written uu: g—‘;’-— = w_ docs not vanish at

n
x°

- (x'l, ceey x‘n). The implicit function theorem can then be applied to w,

xo

yielding theoo results:

1) thore 1o & sphere S(x°) canterod at x* end contained in D.
2) writing x for the projoction of S(x*) onto the Xyy oo X
"cocrdinate plane," n s en (n-1) sphore. Thore is a real valuec
continuous function x(xl, ceey xn-l) defined on n vwhose graph
o -{[xl, ceer X0 X(Eyy ey xn_l)]} 1s the set of all poirts
x 13 S(x°) such that w(x*) » w(x); that 16 } « 8(x*)NwL [w(x’)] .
Note: 2) onyz that, in particular, w [xl, TIVE SEVR JC PRy xn_l)]
= w(x*). Thio is the vsual vay of stating ths theorem.
By Lemma 1, the n-moesure of G is zero. Thus otop I 1s proved if S (x')ﬂcrcc.
Cage 1: r «0, Ifx ia ins(x')ﬂco, thon x is of order r = 0 and
f(x) = £(x°). But in this case w must have been chosen to bo £, 8o w(x} = w(x®),
vhich implies that x is in G.
Case 2: r>0. Ifx is in S(x‘)ﬂcr, then x 1o of order r, vhich
moone that in particular all r-ordor partials of £ vanish at x. Hence @(x) = 0,
Also, by “he samo arpgument w(x®) = 0, and w(x) = w(x*®) implies that x 1a in

G. This completes the proof of lemma 2.

Lema 5: If I‘N(xl,xg, seey X,) d6 an analytic functica defined an n-dimoreional

uclidean space E, and if P(Sy5855 -2y Sp) 1o a probability measure on ET such

DI AL o T s St

4

‘lat there axiatn n hemnled set in UP whose probability is unity, thon

N
Y

-
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Lo®yr coes x) = / t"(xl-ol, ooy X, 0;) AP(By, weey 8,) (B.h)
B |
existos and is analytic.
Proof: Let B be a bounded sot such that P(B) = 1. Then B, the clooure of B, is
such a sot alac; it ie certainly bounded, and it can be assigned the measwro
unity, since
BcBcE  and 1 = P(B) © P(B) $ PEE) = 1 . (B.5)
The probability of ths comploment of B io zero, and honce the integration can
be restricted to tho set B rather than to the wholo of E",
For a fixed (xl, sery X ) and far ey, ..., 8)) in B, Loz -0y, e
x,-2,) 1o bounded, since f, i contimious and B 1o closed and bounded. The
function £y, is also measuredbls, since it is continuous. (This assumss open sots
are measureble.) Then ths intogral exiates.t
The function fN(xl, vey xn) boing analytic moans that fN(xl, ceey xn)
is an analytic functiion in the ordirary conse whon considored as a function of

eny eingle coordinate x Lot us forget about tho other cocrdinates for tho

10

presont. Then fH(x:L) has a pover series expansion at oach point x°,, which

i)
convergos in a naighborhood of tho point (x°1, 0) in the complex plans, Thus

tN(xi) can be extonded for complex values of X, in a repion containing the real

i
axis.
Formally,
£, (x,+h)-¢ (x,)
aa fou(x,) = lin sH sn'\y (5.6) _
Xy h-+0 h '
!
] :
‘cramér, Ref. 1k, Soction 5.2, p. 37. |
e =% —_
Efﬁi« Yomocer T NAT ma oy nteels DeoafB 0SB et - 0 | mdo L, AL oV, SA, Lot ST B e B I L o O 2 TR T T .W~a..,._,_i:f'
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1
-lmh

ff Xy=81y 4. - -
hes 0 5 ”( 178y ’ Xi+h 81, sy X Bn) dP(al, crey D

1)
(8.7)

Bf fu(xl-ol, ey KyBy ey xn-cn) aP(8 5 «uy on)]

1l
= lin / £.(X.=0., +.uy X the .. -
B0 . 5 [N( 170y rer TR0y ey X sn)

(3.8)
-rN(xl-al, ooy xi-ui, seey xn-sn) dI’(al, ceny “n)]
- /lm }- b
heso B H(%70ys ores XytheBy ooy Xp-ap)
B (B.9)
-tN(zl-al, veep gy weey 84X =0,)  AP( 1) eeey an)]
oty
« .5.;1. dP(ul, eees 0g) (8.10)
h:|

The anly question now is whother or not 1t is perminsible to interchangse the order
of integration and taking the linit of the differonce quotient at step (B.9).
This {s pormisoiblo 1f the diffcrence quotient comvurges uniformly, which turns
out to be the cass,

The function fu(xi) is analytic in & damain vhich extonds to complex
values of xy near tho roal exis, The function i‘N(xi +h - oi) can bo considered
as a function of h - 8y) and is analytic for complex valuos of h - 8y in a damain

conteining the real oxis. Since ihe values of 6 ~ (el, +++y 8)) iInBarea

cloged bounded set, and the values of h can certainly be bounded, the set V of

e 3 = -
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velues h - 5, 15 bounded. V can also be taken av clogod, and it can be chosmn i
80 that 1o point s, io on ite boundary. Then thare will be s minimun dio ico

ny > 0 from points s, to the boundary of V. Conoider tho functicn
l -
4’(31, 003 05 h) = i [fu(xl-ei,xfh-ai, oo X an)

it h {0 ond

. _g_f!i, itheo ,
4

gofinsd g || S b, wd s B, ¥ ie continuous at every point, and it fo

dofined for all points (h, 8) with h = u+ivond 6 = (ol, evey nn) of a campact

subset of En"e. V is thereforo uniformly continuous, and its convorgence to

a1,
T;E a8 h approachos zero alang any cowplex valuod path fs uniform in =, Thus
1

the 4ifferoncs quotisnt camvergos wniformly.

Lexma 3': Let Tn(xys eees xu) be a functicn of n complex varisbles, snd supposo
that for ocach 1, there 1aadam.£nni in the complex plans and r mmber ho such
that the domin D, coatainr all points within a distance of ho of the real axis,
and fp(Xy, «oc) X4y ooy X,) 16 an analytic function of X, in D, for all real
values or ths othsr coordinntes, Thon, ir P(el, sesy sn) 1s a probability

measure on the n-dimensional uclidean space M,

fs"(-‘:l: ceep X)) = Enf f“(ll-ﬁl, vy X.n-ﬂn) dP(ol, ey sn) (8.11)

is analytic if it mtiutu.l

Lir ¢
1 1y 18 bounded, the interral muot exiot, 20 1n <he previous caso,

— U e

R L e e
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The preef will be omitted. The idea of tho prcof is no follows: one

muet form the differenco quotient for fon(X3s «++s Xn) for ench coardinate x,
{; [fsu(xl: cees Xty Ly, x0) - Lan(Xys coen Xgs eny xn)]

and shov that the limit as h— 0 exiots, and 1o equal %o what is obtained by
differentiating undor the integral sign. Tho space can be divided into two
parts such that ane will have arbitrarily omall moasure and contribute an arbi-
trarily emall amount to the integrals, while the other will be closed and bounded
and henco ai it the ordor of integration and taking the limit as h—+O can be
intorchanged, as in Lerma 3. Tho domain Di is required so chat differentiation
in the complex pleane will be posaidle.

How let us discusa Thoarem 3. Supposc tN(x) is analytic, .nd suppcso

olther Lomma 3 or Leman 3* holds. Then fau(x) is analytic, ond their ratio

y, fsn-(x)
(x) = LE

is analytic oxcopt whore fn(x) = 0, This 18 a oot of measure zero, by Lemme 2.
Since £(x) is analytic, tho poinis whore £(x) = p form a set of moasure zoro,
by Lemma 21 This proves Theorem 3.
Thoorem 3: I the probability density fumction for noisec elono, fn(.*:), is an
analytic function, (and if either Lemma 3 or Lemma 3' holds,) then the set of
points for which £(x) = 8 has measure zero.

The restriction that Losme 3 or Lemma 3! holds is not at all serious.
If the signals have bounded energy, Lemxa 3 holds., Lemma 3' would be expectod
10 hold for most amalytic protability density functions, and in particular it

doos hold if the .i0ise is Gausoian,

i L;.ut._- thet Lobocgue moaswrt zero implies probubility zoro, since the probability
<1~ throurh density functions.

3 —————
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The folluwing lomas is needed to cauplote the pr ool of Lheorun .

Lozma b: Lot €(x) be & probability density function defined on the n-dinonsional
Euclidean opace E°. Deuoto by P(A) the value of tno integral \f £(x) ax for all
subsets A of E® for which the integral exists, If A lo any P-measurable sot
vhooo mossure P(A ) is finite, and f 0 < y < P (Ay), thon there io a P-
moasurablo sot B, such that P(B,) = 7.

The following proof mnkes the theorem vol’d for any mcagsurc on any
ospace M with the property "“C" defined below.
Proof: Undor the hypothepes above, tho measurs P has a epecinl property reiative
to tho space EB,
Property "C": Thero is a counteble claso [Ci] , 1=1,2, ..., of P-measurable

neto such that if x is & point and € > O then there is a Cy
containing x such that P(Ci) < € .

One can obtain such a cluss by choosing all (n-dimensional) opheres
of rational radius ceontored at points whose coordinates are rational. This
class 18 countable because the rational numbors are countable. Its membora aroc
P-measurable bacause A/ f(x) dx exists for any sphere A, That it has proporty
"c" is a way of otating a fundamental property of integralos.

Ths dssirad sot A will bo canstructed as ths union of & epucial
sequencod [Di
othorwise dofino D) tu be espty. If I)n has been defined, define D

n+l
= D, U[cmlﬂAo] 1t p{p, lJ[cn 2N Ao]} S 7; otervise define D_,) =

Since D;F'Dml’ P('Jn) < P<Dn+1) S Y . Henco the sequence [P(Dn)] of recal

]ot P-pessuroble cets. Dofine Dl to be ClnA0 it P(ClnAc) S Y
Dn.

numbors convergos. A general pror riy of acasures yields the recult that

@ ] ©
£ bl = npP®D ). writen = |} . ,
. Aerjl n n..m( n) % l’ , w then P(B ) - Um P ) € 7

n -m
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It
g
't remaing to be shown that P(Bo) =Y. Suppose P(Bo) < Y; then g
: 12
)’ vriting € = y. P(B,) > 0, one has P(B) « y-ec. Since P(B) < P(Ao), there
{0 & point ¥ {n f‘u bul not np., py properly “C, there lv gome Cy containing
L

% ouch that P(Ch) < € . Returm ¢ £ c I
. () o the dofinitien of D, 1If {Dx,-lu[“k”"‘o]}sy’
then Dy woo defined to bo Y U[C},I)Ao}. Horu

[
P o U{e M ]} s PRyl + D) S P(B) +2(C) S (y-€) s emy.
Thus it woo the case that ¢ NA cp =3 . ¢ o
ALY Dk B,. But CknAo antains a point x not in B,
This contradiction shows that P(By) 18 actually equal to Y end not less than ag
wag supposed,

———man
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APPENDIX C

The {ullowlng theory was devoloped ao iho preparntion of the text of

PR

this report neared completion. The subject matter is appropriate to thie report,
and so it is included.

The purpose of this material is to characterize uniformry best tosts,
or criteria. If there are a family of signal distributions (or hymotheses ; in
statistical teams), and 1f a criteriocn A is an Ae(k) for each of tham, then A is
a wnifcrmly dbest toat.l Theorem Cl states that 1f all distributions in a family
of signal distributions are k-equivalent » 011 optimm criteria are uniform best
tests, and Theorem C2 states the converse.

In the first three casss considered in Part IY of The Theory of Signal

Detectability, the signal kmosm exactly, tho signal known oxcept fsr carrior
rhase, and the signal a sample of white Gaussian noige, two signal distridutions
differing only in signal emergy are k-equivalent, Thus, by Thaorem Cl, a signal.
distribution with 1ixed oignel energy and one vith the signal energy having an
arbitrary distribution are k-squivalent in these three cases., Theso three casec
have for the boundaries of their optimum critaria, planes, cylinders » and spheres,
ToFpoctively. For tha other cases, with more ccarlicatsd criterion bowndariss,

k-equivalence camot be expected when energy 1s changed,

) () 2
Definition: If fg,'"(x) and fs,,( (x) ana f,(x) ave dofined on E®, and 1ir

there exiats a set X of probability zero such that for any two pointe x and y in
in E°, tut not in X,

ll(x)éll(}') if and oply 1f £,(x)2 £,(y)

2

1
then fSN( )(x) and fSN(Q)(x) are said to yield k-equivalent distributions,

“eronen and Pearson, Rof, 13,

4o
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3 Theorem Cl: 1If fSN(l)(x) and fSN(“)(x) give k-oquivalent dietributions, then a Eg‘,

K ! critorion is an A, (k) for the firet if and only if it is an A, (k) for tho second.

! Proof: Suppose A 1o an A, (k) for tho first distribution. Them by Thecrem 7,

thore is a 3 such that A 1s a A (8). By Theorem 2, A contains all pointe for

3 which £(x) > 8 and none for wiich £(x) < B, excopt for o set of probability
zero. Ixcopt for a get of probability zoro, if x and y are any two points such
that x 18 in A and y is not in A, then £, (x) P [l(y). By definition of k-
equivalence, thers is a sct X of probvability zero, such that if x and y are also

not in X, la(x)?. ﬁe(y). Then there must exist a mumber B, such that for any x

4 except a set of probability zoro, ﬁz(x); BE if x is in A and La(x) S ﬂe

1’

if x is not in ﬁe. If follows that A 18 an Al(pa) with reepect to the second

4 distribution. Furthesrmore, PN(A) = k, for either distributiun since ihe proba-
' bility density with noise alono is the same for both distributicns., It follows
3 by Theoren 5 that A 1s an A (k) for the socond distribution.

3 2

: Thearem C2; I fm‘(l)(x) end rSN( )(x) lead to ivo distributions such that foar
3

i

a every K, any criterion A is an Aafk) for cne if and only if it is for tno other
b 2

g also, then i‘s}.,(l)(x) and ’sn( ) (x) lead to k-equivalent distributions.

3 Proof: Conoider the family of sets A, vhero A = {x | ﬁl(x)é a} , and a takes

on all rational nmumber values greater than zero. Each Ay is an A, (k) for somo k
with respect to tho first distribution, dy Theorem 5., Then it ias for ths second

also, by hypothesis. Zach A, is an A; {B{a)] for soms B(a), by Thoorem 7. For

oach A,s the get of polnts C, such that x is in Aa and £{x) < 8{a) or x 18 not

R
s L N TR S

9 ' in 'A“a and £(x) > p(x) has probahility zero, by Thearem 2, Let Xl be thuw union

of pl) the sots Cy» and oince oack Cy has probadbility zero, and the rationul

.wbers and honce the family Cy 16 countahle, it follows the the sot ¥y hag yrotn-

A AL U L3 I
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Now conaider the fomily of scts

A, = m{\ b, = {x a2 (C.1)
a<r
derined for overy positivo real number r. Also deline
c(r) e £.u. b, Q(a) (C.Z)

all caerx
Then for any point x mot in X;,; if ¥ o fn A, 12(3) 2 g(r). Also consider the

family of aets

A* = U A nixlfl (x}>r (C.3)
¥ allz;>x°s {Il }

defined for ovory positive real number r. If x is a point not in xl; and if x
1o 2ot in A® ,

£,(x)& g £. v, g(r*) . (€c.4)
“ all v¥>r

For any valus of » at vhich g(r} is continuous,

g(r) » g. £ > grY) . (C.5)
all r*>r

Any point x vhich ls not in X, ond for vhich .L’l(x) “T 18 in A but not in
A¥*r, &ad thereforo
g(r)3 £,(x) & glr), teeo, £(x) = g(r) . (c.6)
Clearly g(r) is a Tmmotcne Gicreasing function of r. It can thorefore
have at moot a countable muber of discaminuitics. Lot r° denots o discontin-
uity in g(r) and suppose tnat the sot of poinis B = {x] ﬁl(x) - rc} hao prodba-

bility grestor than zero, Define

nirg) = b {p |@ {x|xe Bama £,(x) < a} - o}

n*(z ) a g 4. 'o.{[l l I’({x | e B ang ﬁz(x)> 3}) = O} .

I PR ; ’ [ e -
s claim fc made that h(ro) ¥ n*(ro), uppose M"‘()?, h*(rc). Then there

e t— - e - w———as )bq
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f

do{x) . roand &y (y) = Ty then r, & e It follows from the fact tnat h(r)

3
1

exiots & nmwdos ¥ such that hir )<y < }1“(;-0). Dafine

¢, = {x Ine)S £,x) 5 v}
(c.8)
Cy = {x|y< L, (x) & n*(ro)} ©

Loth € and €, heve probability groater than zoro, by Eq. {(C.7). HNow consider

the got A - Ce. It is an Ag(k) for the lirst cistribution, by Thoorem 5.
Clearly, by Thearems 7 and 2, it cannot be an Aa(k) for the second distribution.

The controdiction leads us to conclule that h(ro) - h*(ro). Then fer each

discontinuity Ty there oxioto a sot of probability zoro, say S(rc), such that if

#)(x) = ry and x 1o not in 8(rg)y £y(x) ~n(r)). LetX, = U S(r)). Then

all r
X, hao probability zero, since thers aro only a countable pumbor of points of
discontinuity r,. Now define X = ){l v xg, X aloo hos probability zero, Let the
function h(r} Lo defined as follows:
h(r) = ¢(r) if g(.) 16 contimuous at r

(c.9)
h(r) = h(ro) at r « r 8 ddscontimiity ot g(r).

The function h(r) has the following propertics: (1) h(r) ic & monotone
increasing function of r, and (2) if ll(x) = r, and x 18 not in X, then

[Q{K) w h{r). The first apsortion io an obvioue cocnscquones of hs way in

Q
Q

vhich h(r) ie defincd, and the fact that g(r) io monotone. Tho sccond assertion
hao been shown soparately firsti for pointe whers g, and hence h, is continuous,
Lq. (C.6), socondly for tis points of discontinuity of h, in the rreceding para-
CRusgil,

liow supposo x and y ere not clements of X, and ll(x)& ﬁl(y). It

. wwr.ctone inereasing hot h(r,) z h(ry), end since fe(x) = h(r‘\) and

3 o W’ oran e =

U T S R T P

S

B T Y R R T




—  ENGINEERING RESEARCH INSTITUTE - UNIVERS!TY OF MICHIGAN -

'} +
"'2(.Y) - h(ry), 12(1) 2 »‘32()' . Sinco X hae probability zero, this completes the

proof.

Theorem ¢3. 1If fSN(l)(x) i k-equivalont to rSN(i)(x) for each valuo of £
detween 2 and n, (or botweon 2 and ), and 8y arc positive real numbers such that

[e0] n

n
% a; =1, (or E a = 1), then fsn(l)(") and }i a, fsn(i)(x):

[o0]
(or 2 27 fsn(l) (x)) yield k-equivalent distributiomsa,
1

The set X (in the definition of k-oquivalonce) for ths distribution

given by tho sum is taben as ths wnion of the eets X for the individual diotri-

butions. Then the proof 13 cbvious,

@)

Theorem Ch: uif Loy (x) 15 a continuous Zunction of @ in an interval [a, b_] ’

if for any two pumbers o and &, f, (al)(x) is k-equivnlont to fs“(a?)(x), and

SKH
if F(a) 18 o monotons function which 10 zero at the loft end of the interval and

1 at tho right and of the interwval, then

b (a)
P @

is k-equivalent to any rSN(a) (x).

Proof: Chooss any q, in the interval [a, b] . Thon for each raticnal value of

(@) (%)

[0 4 m thb interm [5, b] » f (x) m fS“ (x) are k-Qquimmt. There

Sh
is a set Xy» vhich has probability zero, such that if x, y aro not in Xy,

>
£o(z)a £, (v) if and only 1f £, (x)& Lo (y). The wnion X of all X, vith
rotional G also has pxobability zero, since the rational numbors arc countable.

Furthermore, if x and 2
R y aro not in X, thon la(x)zﬁa(y) for any rational velus

i

of 4 implics Ly (x)a £ag(y), and £ qy(x)2 Caolyy tmlies £ (x)2 £2yly) fur

R L6

|
)
'
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all rotiona' values of a. Since rsn(a)(

——taon

x) 1e cantinuouo in a, Za(x) mst be

cantinuous in @ also, and it mugt follow that for any real ¢ in [a, b] and for

awy x, yrot dn X, £.(x)2 £y(y) if end mly if Kao(x)élno(.‘/)- Then it is
sasy to show that if x and y are not in X,

b
| [ [t - 2400] @@ 20

b
if and caly if lao(x)Zlao(y), and hance f tsn<a)(x) dF (a) 1is equivalent
a

to fsﬁ(a°) (x)

L
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LIST OF SYMBOLS

The event 'Tho operator says there 1o eignei plus noice prescnt,”

or a critorion, 1.c., the sct of roceiver inputs for vwhich the
oparator says there is o signal rosent.

Any criterion A vhich maximizes P_, (A) - 8 P,(A), {.e., an opti-
mm criterion of the first typo. an(A) - 0 Fylh)s PR

Any oriterion A for which Py(A) & X, and Py (h) 1 maxtmm, 1.e.,
an optimm: oriterion of the second type. '

Ths event "Tho oporator says therc io noiss alome.”

A paramster doscribing the ability of a reseiver to datect gignalo.
(8ee Boction 5.1 and Fig. 5.1.)

The signal energy.
The n-dimensionsl Euclidean spaco.
Tho probadility density for points x in R if there is noiee alano.

The probability density for points x in R if there i3 eignal plwo
noiss,

The ccxplenentary distridution function f.z¢ liknlihood retio 1f
thero is noise alone, 1.e., Fx(a) is the -robability tbat the

likelihood ratio will be greater than 8 1’ theru is noise alons.

Tho complomsatary distribution fimotics €0 1like: thoed reifo if
there is signal plus nolge,

A symbol uoed primarily for the uppe’ bou . placzd an folse aiam
probability PH(A) in the dsfinition £ th) seoond kind of optimm
oriterimn.

Lgn(x)
The 1ikelihood ratioc for the receiver ingy . X. £({x) = ?;'%x')" .

The dimansion of the specs of receiver ir its, n = 2WT .
Ths event "Thers is noise alone,” cor :he noise power,
The noise pover per unit bandwidth. i, = M .

The probability that the operator will o there fe u@fn plvs
noise if there is noise alome, i.0., the false alex~ ;.- oabit. .

T
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The probability that the oporatoer will say thore iv simmoel pi;
noige If thero is signny plus noise, {.0,, the probebllity of
detection,

Tho a posteriori probability that therc is signal plus nolec
prosont. (Seo Sectione 1.2 and 2.5.)

Tho probability measure defined on R for the set ol expected
signale.

The space of all receiver inputs. (The eot of all possible oig-
nals is the same opaco.)

A signud a(t), vhich may aloo be considered as a point s in R
vith coordinatos (ol, Byy o vy on).

Tha event "Thero is signal plus noiso,”
Time.

The duration of tho observation.

The bandwidth of the receiver inputs.

A receiver input x(t), which may also be considercd as a point x
in R with cuordinatos (xl, Xog o o vy xn)

A symbol usually uged for the likolihood ratio lovol of en optirun

criterion.

The mean of the random variable z if there ls gignal plus noige,
The mean of tho randem variable z if thore is noise alone.

Tho varianco of the randcam variablo z {f there ie noise alono.

The varianco of likelihood ratio if there ie noiose alone.
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